LAMINAR HEAT CONVECTION OF A LIQUID
IN AN ANNULAR REGION WITH A GIVEN HEAT
FLUX

V. A. Brailovskaya and G. B. Petrazhitskii UDC 536.25

We consider unsteady flow and heat transfer for a viscous incompressible liquid in a horizontal annular
channel with a constant heat flux on its outer surface.

The investigation is based on numerical solution of the system of two-dimensional unsteady equations of
motion, continuity, and energy, which has the following form in the polar coordinate system [1}:
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where F and f are the dimensionless stream function and vorticity, respectively; r; =R;/é are the dimension-
less radii of the inner (i=1) and outer (i=2) cylinders; and 6 =R, — R, is the gap between the cylinders.

As a temperature scale for dimensionless temperature ® we choose the quantity {(AT), equal to the
diffcrence between the average temperatures of the outer and inner surfaces, i.e., (AT)= <TW2> — Tw,e

We assume that the liquid is motionless at zero time in the annular region and that the temperature
distribution corresponds to heat-conduction conditions. A constant temperature Ow, =Tw1/(AT) is maintained
on the inner cylinder, and a constant heat flux Qw,» 18 maintained on the outer cylinder, which is equivalent to
the condition (8®/ar)w2= 1 with the assumed scale. The initial distribution @(r, ¢), in accordance with the heat-
conduction equation and the given boundary conditions has the form

8 =r,Inr/r;+ 8,,.

The following similarity parameters are introduced into the original systems of equations: Gr=gB8 ¢
((Twy) ~ Twl)/vz, the Grashof parameter; Pr=vp/a, the Prandtl number; and Fo =7 =at/8%, the Fourier number.

The Zeidel method was used for numerical solution of the system of equations of convective heat trans-
fer, following a preliminary integration of the cquations in an elementary cell of the mesh [1]; the Poisson
equation was solved by the method of variable dircctions. We used second-order formulas to approximate the
derivatives on the boundarics of the region. The computation was carried out in a 17X 17 mesh for half of the
annular region (we assumed symmetry relative to the vertical axis passing through the center of the annular
layer). The difference of the main results of the computation from those obtained from a finer 22 X 22 mesh
was not more than 3%.

Figures 1 and 2 show the development with time of the circulation motion and the variation of the radial
Vr and tangential Vg velocity components in different sections of the annular region (Gr = 104, Pr=0.7, ry/ry=2
and g is the acceleration due to gravity, m/sec?). If the liquid is at rest at zero time, then for Fo=0.02 the
velocities rcach their maximum values, and then gradually decrease, approaching some constant values (Fo=1),
as can be seen by comparing Figs. 1 and 2. IIcre the center of vorticity (and also the region of minimum
velocity) moves downward as the steady conditions become established.

It is characteristic that with increase of Rayleigh number (Ra =GrPr) there is a gradual decrease in the
time at which the maximum convective intensity is reached.
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We can judge the beginning of the inﬂuencj] of convection in the field @(r, ¢) from the appearance of the
vertical temperature differences. Figure 3 shows the variation with time of the temperature distributions for
five values of the polar angle ¢ under conditiond‘ given by Gr=10%,Pr=0.7, ry/r;=2, dw, =1, where the solid
curves correspond to Fo=1 and the dashed cuers, to Fo=0.02.
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The one-dimensional temperature field ® =@(r) for Fo=0 begins to experience these convection effects
for Fo=0.02. The temperature profiles begin to diverge and for Fo=0.1 reach a steady distribution, with tem~
perature layering typical of convection.

A similar relation obtains in the variation of the temperature of the external wall Ow,, as a function of
Fo (Fig. 4, Gr=10%, Pr=0.7, ry/ri=2). The constant temperature Ow, for Fo=0 becomes appreciably non-
uniform along ¢ so Fo increases, and, starting at Fo=0.3, practically does not vary with time. The maximum
scatter in @, under steady conditions is 25% of the mean value for these conditions (Gr=10%.

As is shown in Fig. 5 (Pr=0.7), the nonuniformity of the temperature of the outer cylinder under steady
conditions increases with increase in the Grashof number, and this change is basically caused by decrease in
the wall temperature in the lower part of the annular layer.

The investigation of the dependence of the temperature field on the Gr and Fo numbers reveals three
characteristic regimes: an initial regime, close to the heat conduction region, when ® =@(¥Fo); a transition
regime in which convection begins to affect the temperature distribution (® =@(Gr, Fo)); and a stationary re-
gime in which there is no dependence of temperature on time (® =®{(Gr)). This conclusion agrees with the
classification of regimes of flow and heat transfer for unsteady convection in a rectangular region, derived in

{2l

Knowing thé temperature distribution in the flow field, one can calculate the local Nusselt numbers at the
boundaries of the region, which are determined in this case in terms of local temperature differences between
the outer and inner walls for each value of ¢:

(00N 1 .
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while the mean Nusselt number is obtained by averaging the local values with respect to ¢ in the range [—7/2,
/2] and is '

8 1
(Nu, = <7»7>i aes

The graphs of variation of Nu;j(¢) on the inner and outer walls for various values of Grashof number are
shown in Fig. 6 [1) Gr=0.5"10%; 2) Gr=10%; 3) Gr=0.510%; 4) Gr =10%; 5) heat-conduction regime with Pr=0.7,
ry/ry=2].
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Following determination of the Nusselt number, the function Nu,(¢) in essence reproduces a curve, the
inverse of ®w2(<ﬂ) {see Fig. 5) at the appropriate Gr number, since ®w2(g0) determines the local difference ®w,, -
to an accuracy within a constant A@(¢). .

With increase in the Gr number from 103 to 0.5 - 10%, there is a decrease in the local numbers Nu, along
the flow of hotliquid from ¢ = —n/2 to ¢=7/2, around the outer cylinder wall. At some value of ¢ in the range
[n/4,7/2] the local values of Nu become less than in the heat-conduction regime, since the temperature differ-
ence (O, ~ ®W1) inthis region under steady conditions becomes less than A® in the heat-conduction regime.

Thus, when there is a constant heat flux along the outer cylinder surface, the distribution of local Nu
numbers with respect to ¢ difféers more from the corresponding relation in the purely heat-conduction regime
than the variation of ®w, along ¢ (see Fig. 5).

In regard to the family of Nuy(¢) curves, constructed for various Gr values (see Fig. 6), these must be
analyzed with allowance for variation of local heat flux (9@/9r); along the inner cylinder surface. With liquid
motion downward around the cold cylinder wall the local temperature gradients decrease along ¢, because of
increase of the boundary-layer thickness. Because these are normalized to different A®(gp), the form of the
Nuy(¢) curves differs from the analogous relations in the case of isothermal boundaries [1].

This difference begins to show up at Gr> 10%, when the nonuniformity of ®w2 as a function of ¢ becomes
appreciable. We see a rise in the curves giving Nu,, as a function of ¢ for 7/2> ¢>7/8, in spite of a decrease
in local heat flux, which is due to the sharp decrease in the A®(¢) drop in this range of ¢ (see Fig. 5). With
further variation of ¢ from 7/8 to —x/2,the sharp decrease in A®{(¢) stops, which leads to a decrease in the Nu
number ip this range of ¢. At a certain value of ¢ the local Nu numbers become less than in the liquid at rest.

The maxima of the Nu,(¢) curves (see Fig. 6) are displaced with increase of Gr number. This corre-
sponds to a displacement to the right of the point at which the sharp increase in 88/3¢ occurs (see Fig. 5).

The sharp variation in the nature of the ®w,(¢) curves for ¢~ n/4 is due to the considerable drop in the
velocities near this point.

For the characteristics of heat-transfer intensity under various flow regimes, we obtained a convective
coefficient dependence given by the formula

ex; = (Nuyyr;In ?—, i=1,2,
1

as a function of Rayleigh number.

During the establishment of steady conditions the dependence &= ex(Ra, Fo) converts to &k =ex(Ra) with
increase in Fo. The boundary for establishment of steady heat-transfer conditions during convective motion
is approximated by the formula Fo=1.52/Ra%!?,

Under steady conditions the graphs of g as a function of Rayleigh number is approximated by the para-
metric relation gx =0.257Ra%2!,

In comparing with an analogous relation in the case of isothermal walls it is clear that for small Ra (Ra<
2300) the heat transfer is more intense under the condition gw, = const, while for large Ra it is more intense
in the case @y, =const. This is due to a redistribution of outer wall temperature under conditions of constant
heat flux to it and to the formation of a stagnant heated zone in the upper part of the region, preventing heat
loss from the hot wall.
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ANALYTICAL INVESTIGATION OF THE SOLIDIFICATION
PROCESS OF A LIQUID METAL IN CONTINUOUS CASTING
UNITS.

L. N. Maksimov and A. N. Cherepanov UDC 669.147

We consider the fully established process of the solidification of a flat continuous ingot in a cooling system
with a liquid-metal heat-transfer medium, filling the gap between the surface of the ingot and the water-cooled
wall of the crystallizer (Fig. 1, where 1 is the ingot; 2 is the liquid~metal heat-transfer medium; 3 is the wall;
4 is the cooling medium; and 5 is a capillary packing). Here we shall assume that the external water cooling
can be regulated along the ingot, for example, by sectional heat removal. The presence of a liquid-metal heat-
transfer medium between the surface of the ingot and the water-cooled wall excludes the formation of a gas
gap, which makes it possible to increase the rate of the cooling process, making it uniform around the perim-
eter of the ingot.

We assume that the transfer of heat along the Z axis due to thermal conductivity can be neglected in
comparison with convective heat transfer [1] and that the temperature of the metal in the liquid phase is equal
to the crystallization temperature. Under these conditions, we shall take account of the effect of heating of the
melt by a corresponding increase in the latent heat of fusion in the approximation of the Stefan condition.

§1. If the width of the ingot is much greater than its thickness, then the solution of the problem posed
will depend only on the two variables x and z. We select a Cartesian system of coordinates with the Z axis
lying in the plane of symmetry of the ingot and as the origin of coordinates we take the point of intersection of
the Z axis with a plane passing through the point of the start of crystallization. Taking account of the assump-
tions made above, the equation determining the temperature distribution in the solid phase has the form

aT a ar
. puc3=_a;(xa_z), (1.1)

where v is the velocity; p is the density; C is the heat capacity; and A is the thermal conductivity of the ingot.

We write the boundary condition at the surface of the ingot in the form of the Newton—Richman law
ar

dz X=2X¢

= — k(T lxme, — Tyy(2)), (1.2)

where 2x, is the thickness of the ingot; T)M is the temperature of the cooling medium (water), which is assumed
to be a given function of the coordinate z; k=(Ry+ Ry+ R,) is the heat-transfer coefficient; Ry and Ry, are the
thermal resistances of the liquid-metal heat-transfer medium and the wall; and Ry is the external heat resis-
tance.

At the crystallization surface, the following conditions must be observed:

o
9z |{x=8(2)

= x*p v}’ (2); (1.3)
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